RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

FIRST YEAR B.A./B.SC. SECOND SEMESTER (January – June), 2012 Mid-Semester Examination, March 2012

 Date
 : 19/03/2012
 PHYSICS (Honours)

 Time
 : 11 am - 1 pm
 Paper : II
 Full Marks : 50

[Use separate Answer Books for each group]

Group – A : Mechanics- I

Answer any two questions.

1.a) Show that the two dimensional motion of a particle of mass m in a central potential V(r) is equivalent to a one dimensional radial motion in an effective potential, $U_{eff}(r)$ given by

$$U_{eff}(r) = \frac{m h^2}{2r^2} + V(r) \qquad \text{where h is twice the areal velocity.}$$
[4]

b) Obtain an expression for the potential V(r), if the central orbit is given by $r = c\theta^2$, c is constant and the particle has an energy E and angular momentum L. [3]

c) In (b) above, show that θ varies with time t as $\theta = At^{\frac{1}{5}}$, A is constant. [3]

2.a) A bug crawls outward with constant speed v along the spoke of a wheel which is rotating with constant angular velocity $\vec{\omega}$ about a vertical axis.

i) Find all the forces acting on the bug.

ii) If the coefficient of friction between the bug and spoke is μ , find how far the bug crawls before it starts to slip ? [3+1]

b) Write down the equation of motion of a particle moving near the surface of the rotating earth, neglecting all ω^2 –terms.

i) In terms of a suitable coordinate system at latitude λ , obtain an expression for angular velocity $\vec{\omega}$.

ii) A particle is dropped at rest from the top of a tower of height H. Show that the coriolis force drifts it eastward and find the eastward deflection as it reaches the ground.

3.a) A noninertial frame O_{xyz} is accelerating with unit acceleration along the x-axis and is also rotating with unit angular velocity about the x-axis. A particle moves along the y-axis with unit speed. Find the absolute acceleration of the particle in terms of its distance from the origin.

(assume all necessary formulas)

b) A comet is going in aparabolic orbit lying in the plane of the earth's orbit, which is a circle of radius a. The nearest distance of the comet from the sun is p, and occurs at $\theta = 0$. Sketch the orbits of the earth and comet and hence show that the points where the two orbits intersect are given by $\cos \theta = -1 + \frac{2p}{a}$. (assume all necessary formulas) [5]

[6]

[5]

Group – B : General properties of Matter

Section- I. Answer <u>any one</u> question.	
4.a) What do you mean by Surface tension of a liquid ?	[2]
b) Prove that $E = S - T \frac{dS}{dT}$ where the symbols have their usual meanings.	[5]
5.a) Define angle of contact.	[2]
b) Derive an expression of capillary rise of a liquid in term of surface tension, angle	
of contact.	[5]
Section- II. Answer <u>any one</u> question.	
6.a) Calculate the work done to form a uniform sphere of radius R and mass M.	[4]
b) Find the potential at a point in the material of a thick spherical shell of mass M, internal radius a and external radius b.	[4]
	111

7.a) If the density inside the earth increases in direct proportional to the depth, prove that the intensity would be maximum at a depth equal to $\frac{1}{3}$ of the radius and that its magnitude would be $\frac{4}{3}$ times that on the surface of the earth. [5]

b) Calculate the gravitational force of attraction between two hemispheres of a uniform sphere. [3]

Group –**C** : Waves and Vibrations

Answer any one question.

8.a) Set up the equation of motion for damped simple harmonic oscillator. Assuming the motion starts at t=0	
from x=A with zero velocity, solve the equation.	[2+4]
b) Distinguish between amplitude resonance and velocity resonance.	[2]
c) A vibrator of mass 10 gm is acted upon by a restoring force of 10^7 dyne/cm, a retarding force of 4.	<i>x</i> 10 ³
dyne/velocity and a driving force of $10^5 \cos pt dynes$. Find the value of maximum amplitude.	[2]
9.a) Deduce the differential equation for a progressive wave. Show that the energy density of a plane	

b) Find the condition for weakly damped, critically damped and over damped motion. In which case the motion will be oscillatory?

[3+4]

progressive wave is proportional to square of both amplitude and frequency.

80參Q